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Abstract In this manuscript we study geometric regularity estimates for quasi-linear elliptic
equations of p-Laplace type (1 < p < ∞) with strong absorption condition:

−div(�(x, u,∇u)) + λ0(x)u
q
+(x) = 0 in � ⊂ R

N ,

where � : � × R+ × R
N → R

N is a vector field with an appropriate p-structure, λ0 is a
non-negative and bounded function and 0 ≤ q < p − 1. Such a model permits existence
of solutions with dead core zones, i.e, a priori unknown regions where non-negative solu-
tions vanish identically. We establish sharp and improved Cγ regularity estimates along free
boundary points, namely F0(u,�) = ∂{u > 0} ∩ �, where the regularity exponent is given
explicitly by γ = p

p−1−q � 1. Some weak geometric and measure theoretical properties
as non-degeneracy, uniform positive density and porosity of free boundary are proved. As
an application, a Liouville-type result for entire solutions is established provided that their
growth at infinity can be controlled in an appropriate manner. Finally, we obtain finiteness
of (N − 1)-Hausdorff measure of free boundary for a particular class of dead core problems.
The approach employed in this article is novel even to dead core problems governed by the
p-Laplace operator −�pu + λ0uqχ{u>0} = 0 for any λ0 > 0.
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1 Introduction

Quasi-linear elliptic equations whose nonlinear nature give rise to free boundaries come from
as varied phenomena as reaction–diffusion and absorption processes in pure and applied math-
ematics. Throughout the last decades we can find in the literature some remarkable examples
which model several problems derived from theory of chemical–biological processes, com-
bustion phenomenon and population dynamics, just to mention a few. Regarding this studies,
an often more relevant problem to be dealt from a applied point of view is that which arises
from diffusion processes with sign constrain, which are in general the only significant cases
in physical situations (cf. [3–5,13,20] for some motivational works). An interesting example
is given by {−�pu(x) + λ0(x) f (u)χ{u>0} = 0 in �

u(x) = g(x) on ∂�,
(1.1)

where 1 < p < ∞, � ⊂ R
N is a regular and bounded domain, �pu(x) = div(|∇u|p−2∇u)

is the well-known p-Laplace operator and λ0 is a positive bounded function. In such a
context λ0 is known as Thiele Modulus and it controls the ratio of reaction rate to diffusion–
convection rate. Here f is a continuous and increasing reaction term satisfying f (0) ≥ 0
and g is a continuous non-negative boundary value datum (in applied sciences, f represents
the ratio of reaction rate at concentration u to reaction rate at concentration unity). When
the nonlinearity f ∈ C1(�) is locally (p − 1)−Lipschitz near zero,1 it follows from the
Maximum Principle that nonnegative solutions must be, in fact, strictly positive (cf. [28,35]).
However, the function f may fail to be differentiable or even not decaying fast enough at
origin. For instance, if f (t) ≈ tq with 0 < q < p − 1, f fails to be Lipschitz of order
p− 1 at the origin; in this case, problem (1.1) has an absence of Strong Minimum Principle,
i.e., non-negative solutions may vanish completely within an a priori unknown region of
positive measure �′ ⊂ � known as dead core set (cf. Díaz’s Monograph [13, Chapter 1] for
a complete survey about this subject of research). Such a peculiar characteristic of dead-core
solutions allow us to treat (1.1) as a free boundary problem.

This class of dead core free boundary problems has received warm attention since the late
70’s. A huge amount of investigations were carried out on this topic of research, including
existence of solutions and dead core sets, properties of localization, asymptotic behavior
of solutions and “effectiveness factor” among others, see, for instance the works due to
Bandle et al. [5,6], Díaz et al. [12–16] and Pucci and Serrin [28,29]. Despite of the large
literature on divergence form dead core problems, quantitative properties for models with non-
uniformly elliptic characters and a general structure are far less studied (cf. da Silva et al. [10,
11] as example of such considerations), and this has been our main impetus for the studies
in the current article.

Therefore, in this article we study diffusion problems governed by quasi-linear elliptic
equations of p-Laplace type for which a Minimum Principle is not available:{−div(�(x, u,∇u)) + λ0(x) · f (u)χ{u>0} = 0 in �

u(x) = g(x) on ∂�,
(1.2)

where � : � × R+ × R
N → R

N satisfies respectively a p-ellipticity and p-growth condi-
tion, which will be specified soon, 0 ≤ g ∈ C0(∂�), λ0 ∈ C0(�) is a non-negative bounded
function and f is a continuous and increasing function with f (0) = 0. We are particularly

1 We said that f satisfies a Lipschitz condition of order p − 1 at 0 if there exist constants M, δ > 0 such that
f (u) ≤ Mu p−1 for 0 < u < δ.
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interested in prototypes coming from combustion problems, chemical models (porous catal-
ysis) or enzymatic processes where the existence of dead cores plays an important role in the
model (cf. [3,4,20] for more explanations). For example, when u represents the density (or
temperature) of a chemical reagent (or gas), where such a solution is vanishing, it delineates
a region where no reagent (temperature) is present. The standard model is given by

− div(�(x, u,∇u)) + λ0(x) · uqχ{u>0} = 0 in �, (1.3)

where 0 ≤ q < p − 1 is called the order of reaction, and (1.3) is said to be an equation with
strong absorption condition.

The study of (1.3) is meaningful, not only for its applications, but also for its innate rela-
tion with several free boundary problems appearing in the literature (cf. Alt and Phillips [1],
Andersson [2], da Silva et al. [11], Díaz [13], Friedman and Phillips [19], Leitão and Teix-
eira [25] and Phillips [27] for a variational treatment and da Silva et al. [8] and Teixeira [33]
for a non-variational counterpart; we refer also to reader da Silva et al. [9,10] for problems
in the parabolic setting).

1.1 Main hypothesis and overview of article

Given a bounded domain � ⊂ R
N we consider a function � : �×R×R

N → R
N satisfying

the following structural properties:

(H1) [Continuity]. � ∈ C0(� × R × R
N ;RN ).

(H2) [Monotonicity]. For every ξ1, ξ2 ∈ R
n and (x, s) ∈ � × R there holds

〈�(x, z, ξ1) − �(x, z, ξ2), ξ1 − ξ2〉 ≥ 0.

(H3) [p-Ellipticity]. There exists positive constants c1, c2 such that for all (x, z, ξ) ∈ � ×
R × R

N there holds

〈�(x, z, ξ), ξ 〉 ≥ c1|ξ |p − c2|z|p

where p ∈ (1,∞).
(H4) [p-Growth]. There exists positive constants c3, c4 such that for all (x, z, ξ) ∈ � ×

R × R
N and 1 < p < ∞ there holds

|�(x, z, ξ)| ≤ c3|ξ |p−1 + c4|z|p−1

Example 1.1 A prototypical example for such a family of operators is given by

�(x, z, ξ) = A(x)|ξ |p−2ξ + b(x)|z|p−2z

where A ∈ R
N×N is a symmetric uniformly elliptic and bounded matrix and b is a non-

negative bounded function. Another class of examples consist of

�(x, z, ξ) = |A(x)ξ · ξ | p−2
2 A(x)ξ + b(x)|z|p−2z,

where A(x) and b are as above. Notice that in the previous examples when A(x) = IN (the
identity matrix) and b ≡ 0, we recover the p-Laplace operator.

We can refer (provided that �(·, ·, ξ) is restrict to compact sets) the p-generalized mean
curvature operator, namely

�(x, z, ξ) = A(x)|ξ |p−2

(
√

1 + |ξ |2)m ξ + b(x)|z|p−2z,
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for anym > 0 andA(x) and b as before. Observe that we recover the mean curvature operator
when p = 2 and m = 1. Finally, provided that �(·, ·, ξ) is restrict to compact sets, we can
cite the following class of operators

�(x, z, ξ) = A(x)|ξ |p−2

(1 + |ξ |p)1− s
p
ξ + b(x)|z|p−2z,

where 1 < s ≤ p < ∞. Such an operator reduces to p-Laplace when s = p, A(x) = IN
and b ≡ 0.

Finally, by way of motivation, fix 0 < q < p−1 and R > r0 > 0. Then, the radial profile
u : BR(0) → R+ given by

u(x) = (|x | − r0)

p
p−1−q
+

is a weak solution to

−�pu + c(N , p, q) · uq(x) = 0 in BR(0).

A feature worth commenting about this example is that, in general, solutions to (1.3) are
know to be locally of class C1,γ for some γ ∈ (0, 1) (cf. [7,17,23,34]). However, for such
an example, fixed p > 1, one observes that u ∈ C�α�,β

loc (BR(0)), where

α(p, q) := p

p − 1 − q
and β(p, q) := p

p − 1 − q
−
⌊

p

p − 1 − q

⌋
.

Moreover, notice that α(p, q) > 2 provided that q > max
{

0,
p−2

2

}
, which means that

this is a classical solution, even across the free boundary. The proper understanding of such
a phenomenon should yield decisive geometric information about the solution and its free
boundary, and this is the main goal of our investigation, which focus on a systematic and
non-linear approach for such a class of problems. Therefore, we will show that any solution
to (1.3) behaves near its free boundary like the previous example.

Precisely, we will prove the following improved regularity estimate at free boundary
points:

Theorem 1.2 Let u be a bounded weak solution to (1.3). Then, given τ > 0 there exists
a positive universal constant2 C = C(N , p, q, τ, λ+) such that for any x0 ∈ � fulfilling
Bτ (x0) ⊂ � and any r ≤ τ

2 , the following estimate holds:

sup
Br (x0)

u(x) ≤ Cmax

{
inf

Br (x0)
u(x), r

p
p−1−q

}
. (1.4)

Particularly, if x0 ∈ ∂{u > 0} ∩ � (a free boundary point), then

sup
Br (x0)

u(x) ≤ Cr
p

p−1−q

for all 0 < r < min
{

1,
dist(x0,∂�)

2

}
.

2 Throughout this manuscript, we will refer to universal constants when they depend only on dimension and
structural properties of the problem, i.e. on N , p, q, c1, c2, c3, c4 and the bounds of λ0

123



Sharp regularity estimates for quasi-linear elliptic dead… Page 5 of 24 83

One more time we must stress the comparison between the regularity coming from dead
core solutions and those coming from the classical elliptic Schauder regularity theory. For
didactic reasons, let us suppose that u is a weak solution to

− div(∇u) + λ0(x)u
q(x)χ{u>0} = 0 in B1, (1.5)

where 0 < q < 1 and λ0 ∈ C0,q(B1).
Under such assumptions the Schauder regularity theory assures that classical solutions

to (1.5) are C2,q
loc (B1) (particularly at free boundary points). On the other hand, our main

Theorem 1.2 claims that u is Cα,β at free boundary points, where

α :=
⌊

2

1 − q

⌋
and β := 2

1 − q
−
⌊

2

1 − q

⌋
.

Nevertheless, we must highlight that for any 0 < q < 1 one have

2

1 − q
> 2 + q,

which means that dead core solutions are more regular, along free boundary points, that the
available best regularity result coming from classical regularity theory.

By way of motivation, we must highlight that (1.3) (provided � does not depend on u)
can be understood as the Euler–Lagrange equation related to the the following nonlinear
minimization problem

min
∫

�

F(x, u,∇u) dx, (1.6)

where the minimum is taken over all non-negative functions in W 1,p(�) such that u = g on
∂� and

F(x, u,∇u) = G(x,∇u) + h(x, u),

for suitable G and h, see Sect. 7 for more details. Recall that the study of the variational
problem like (1.6) is fairly developed and well-understood currently, see Manfredi [26] for a
survey on this subject. As another example, we can cite Leitão and Teixeira [25], where it is
studied this minimization problem and established several analytic and geometric properties
for weak solutions to (1.3).

We must highlight that the approach leading our results (regularity and qualita-
tive/quantitative analysis) are novelties in the literature and differs from the techniques used in
[8–10], [13, Chapter 1], [32, Section 4] and [33], where different dead core type problems for
divergence and non-divergence form operators were studied. Moreover, our results extend,
in some extent, the previous works for obstacle problems with zero constraint, namely, when
q = 0 (see Shahgholian et al. [21] and [24] for some examples on this subject). Finally, we
also lead to interesting results in the p-Laplace setting, i.e., as �(x, u,∇u) = |∇u|p−2∇u
(compare with [11]).

In contrast with the classical obstacle problem for the Laplace operator with zero con-
straint, which admits C1,1 solutions, the passage to the general quasi-linear heterogeneous
counterpart carries several difficulty levels. The first one is the nonlinear character of the
problem. The second one is the lack of homogeneity for such a general quasi-linear elliptic
operators. Another pivotal feature of dead core problems consists in that |∇u| vanishes at
free boundary points, i.e. the operator becomes degenerate/singular along the free boundary.
For this very reason, controlling solutions near the free boundary is a non-trivial task. Finally,
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we must deal with a more complicated form of the Harnack’s inequality, as well as a priori
gradient estimates, which are few develop in the literature.

In conclusion our paper is organized as follows: In Sect. 2 we present the structural
properties of the operators that we treat throughout the article. Yet in Sect. 2, we deliver
some results about quasi-linear elliptic problems which are useful in our studies. In Sect. 3,
we deliver a proof of Theorem 1.2 and its consequences. Section 3 is devoted to analyse the
borderline case, i.e., as q = p − 1, where we prove that solutions cannot vanish at interior
points unless they are identically zero. Section 4 is devoted to prove some weak geometric
properties such as non-degeneracy. More precisely, a dead core solution u leaves the free
boundary precisely as

u(x) ≥ dist(x0, ∂{u > 0}) p
p−1−q ∀ x ∈ {u > 0} ∩ �.

As consequence from this pivotal geometric information, we obtain positive density and
porosity of the free boundary. Section 6 is dedicated to applications of the main results, such
as Liouville type results. Our Liouville Theorem assures that

u(x) ≥ �(λ0, N , p, q)|x | p
p−1−q ∀ |x | � 1

for a suitable constant �(λ0, N , p, q) > 0 unless that u be identically zero. Finally, in Sect. 7,
we study the finiteness of (N − 1)-Hausdorff measure estimates of free boundary. Precisely,
we will show that for a particular class of problems modelled by (1.3) we have that

μ� = div(�(x,∇u)) − (q + 1)λ0(x)u
q
+χ{u>0}

defines a non-negative Radon measure supported along the free boundary. Consequently, for
such class, we prove that

c0r
N−1 ≤ HN−1(Br (x0) ∩ ∂{u > 0}) ≤ C0r

N−1

for universal constants c0,C0 > and any ball Br (x0) centred in free boundary points.

2 Preliminaries

Notations Let us start this section by introducing some notations which we shall use through-
out this article.

• N denotes de dimension of Euclidean space R
N .

• u+ = max{0, u}.
• F(u0,�) := ∂{u0 > 0} ∩ � shall mean the free boundary.
• LN denotes the n-dimensional Lebesgue measure.
• HN−1 denotes the (N − 1)-dimensional Hausdorff measure.
• �′ � � means that �′ ⊂ �′ ⊂ �, and �′ is compact (�′ is compactly contained in �).
• Br (x0) denotes the ball of center x0 and radius r . When the center is 0 we just write Br .
•

Sr [u](x0) := sup
Br (x0)

u(x), Ir [u](x0) := inf
Br (x0)

u(x).

Moreover, we will omit the center of the ball when x0 = 0.
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Definition 2.1 (Weak solution) We say that u ∈ L1
loc(�) is a weak supersolution (resp.

subsolution) to
− div(�(x, u,∇u)) + �(x, u,∇u) = 0 in �, (2.1)

if it is weakly differentiable in �, i.e., all its weak derivatives of first order exist, �(·, u,∇u) ∈
L1

loc(�) and for all 0 ≤ ϕ ∈ C1
0(�) it holds that

∫
�

�(x, u,∇u) · ∇ϕ(x) dx ≥
∫

�

�(x, u,∇u)ϕ(x) dx

(
resp. ≤

∫
�

�(x, u,∇u)ϕ(x) dx

)
.

Finally, we say that u is a weak solution to (2.1) when it is simultaneously a weak super-
solution and a weak sub-solution.

We will also use the following useful comparison result for weak solutions (see for instance
[13]).

Lemma 2.2 (Comparison Principle) Let � ⊂ R
N be a bounded open set, λ0 ∈ L∞(�) and

f ∈ C([0,∞)) a non-negative and non-decreasing function. Assume that we have that

−div(�(x, v,∇v))+λ0(x) f (v)χ{v>0} ≤0 ≤ −div(�(x, u,∇u)) + λ0(x) f (u)χ{u>0} in �.

in the weak sense with � fulfilling (H1)–(H4). If v ≤ u in ∂� then v ≤ u in �.

An consequence from Lemma 2.2 is the following existence of dead core solutions.

Theorem 2.3 (Existence/uniqueness of dead core solutions) Suppose that the assumptions
of Lemma 2.2 are satisfied. If u∗ is a sub-solution and u∗ is a super-solution to (1.2) with
g ∈ C0(∂�) not identically zero such that u∗ = g = u∗ on ∂�, then there exists a non-
negative function u fulfilling (1.2) in the weak sense with u∗ ≤ u ≤ u∗ in �. Moreover, such
a solution is unique.

The following Serrin’s Harnack inequality will be useful for our arguments. For the case
p < N , this inequality follows by specializing [31, Theorem 5], with ε = 1, R = 1

2 , α = p,
e = g = c = d = 0 and f = λ+ sup

B1/2

uq . The case p ≥ N is obtained by using [30,

Theorems 6 and 9] with R = 1
2 , α = p, e = g = 0 and f = λ+ sup

B1/2

uq .

Theorem 2.4 (Harnack inequality) Let u be a non-negative weak solution to (1.3) in the ball
B 3

2
with � fulfilling (H1)–(H4). Then

S 1
2
[u] ≤ C(N , p)

(
I 1

2
[u] + λ

1
p−1
+ S1[u] q

p−1

)
.

3 Sharp regularity estimates along free boundary

In this section we will obtain sharp regularity estimates for weak solutions to dead core
type problems. Such results come out by combining the Serrin’s Harnack inequality with
the scaling invariance of the equation and the optimal scaling for solutions at free boundary
points.
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Proof of Theorem 1.2 Notice that the scaled and normalized function

vr (x) := u(x0 + r x)

r
p

p−1−q
,

satisfies the equation

−div(�r (x, vr ,∇vr )) + λ̃0(x)(vr )
q
+ = 0 in B1,

in the weak sense, where

�r (x, s, ξ) := r− (1+q)(p−1)
p−1−q �

(
x0 + r x, r

p
p−1−q s, r

1+q
p−1−q ξ

)
and λ̃0(x) := λ0(x0 + r x).

Observe that �r satisfies the same structural conditions as �. Indeed, (H1) and (H2) are
trivially satisfied. Condition (H3) on � implies that it is also fulfilled by �r

〈�r (x, s, ξ), ξ 〉 =
〈
r− (1+q)(p−1)

p−1−q �

(
x0 + r x, r

p
p−1−q s, r

1+q
p−1−q ξ

)
, ξ

〉

= r− (1+q)p
p−1−q

〈
�

(
x0 + r x, r

p
p−1−q z, r

1+q
p−1−q ξ

)
, r

1+q
p−1−q ξ

〉

≥ c1|ξ |p − c2|z|pr p
≥ c1|ξ |p − c2|z|p

since 0 ≤ q < p − 1 and 0 < r < 1.
Similarly, condition (H4) on � implies that it is also fulfilled by �r ,

|�r (x, z, ξ)| ≤ r− (1+q)(p−1)
p−1−q

(
c3|z|p−1r

p(p−1)
p−1−q + c4|ξ |p−1r

(p−1)(1+q)
p−1−q

)

= c3|z|p−1r p−1 + c4|ξ |p−1

≤ c3|z|p−1 + c4|ξ |p−1

since p > 1 and 0 < r < 1.
By applying Theorem 2.4 we obtain

S 1
2
[vr ] ≤ C(N , p)

(
I 1

2
[vr ] + λ

1
p−1
+ S1[vr ]

q
p−1

)
. (3.1)

For q = 0, by scaling back (3.1) in terms of u, the proof is immediate, see [24]. Thus,
consider 0 < q < p − 1 and τ

4 ≤ c ≤ τ
2 . In order to iterate (3.1) in relation to rk := c

2k
for

0 ≤ k ≤ n0 such that rn0 = r for some n0 ∈ N, we must consider two possibilities.
First, if it holds that

r
−p

p−1−q
k Irk [u](x0) ≤ λ

1
p−1
+

(
r

−p
p−1−q
k−1 Srk−1 [u](x0)

) q
p−1

for 1 ≤ k ≤ n0,

we arrive at

r
−p

p−1−q
n0 Srn0

[u](x0) ≤ C(N , p, q, λ+)

(
r

−p
p−1−q

0 Sr0 [u](x0)

) q
p−1 ≤ C

from where we deduce that Sr [u](x0) ≤ Cr
p

p−1−q .
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Conversely, if for some k0 ≤ n0 it holds that

r
−p

p−1−q
k0

Irk0
[u](x0) ≥ λ

1
p−1
+

(
r

−p
p−1−q
k0−1 Sr0−1[u](x0)

) q
p−1

and

r
−p

p−1−q
k Irk [u](x0) ≤ λ

1
p−1
+

(
r

−p
p−1−q
k−1 Srk−1 [u](x0)

) q
p−1

for k0 < k ≤ N0,

then we arrive at

r
−p

p−1−q
n0 Srn0

[u](x0) ≤ cr
−p

p−1−q
k0

Irk0
[u](x0) ≤ cr

−p
p−1−q
n0 Irn0

[u](x0),

where c = c(N , p, q, λ+), from where the proof of the result follows. ��
As an immediate consequence of Theorem 1.2 we obtain a finer decay near free boundary

points. Precisely, a dead core solution u arrives at its null set as the distance to the free
boundary.

Corollary 3.1 Let u be a weak solution to (1.3) and x0 ∈ {u > 0}∩�. Then, for a universal
constant C > 0 there holds that

u(x0) ≤ C.dist(x0, ∂{u > 0}) p
p−1−q .

Remark 3.2 Following the same arguments that in the proof of Theorem 1.2, it is pos-
sible to obtain similar regularity estimates for a family of problems with a general (non
q-homogeneous) non-linear absorption term f : [0, ‖u‖∞] → R+, i.e.,

−div(�(x, u,∇u)) + f(u) = 0 in �,

provided f(0) = 0 and for some constant C > 0 it holds that

f(s) ≤ Csq ,

for all 0 < s � 1. Some interesting examples include

f(u) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λ0(x)
(
eu

t+ − 1
)

for t ≥ q > 0

λ0(x) ln
(
ut+ + 1

)
for t ≥ q > 0

λ0(x)u
q
+ ln(ut + 1) for t > 0

λ0(x)
uq+

(1+ut )m for t > 0 and 0 < m ≤ q.

We have chosen the case f(u) = λ0(x)u
q
+(x) in order to introduce the main ideas of

Theorem 1.2.

In this final part we will analyse the critical case q = p−1. For this purpose, let us define
the operator,

Q�[u](x) := −div(�(x, u(x),∇u(x))) + λ0(x)u
p−1(x). (3.2)

Notice that this operator is critical since all the estimates established in the previous
sections deteriorate as q approaches p − 1. Particularly, it follows from Theorem 1.2 that if
u vanishes at an interior point x0 ∈ �, then Dku(x0) = 0 for all k ∈ N, i.e., any vanishing
interior point is an infinite order zero (compare it with the Unique continuation property). By
means of a geometric barrier argument (Hopf’s boundary type reasoning), which explore the
scaling invariance of the operator Q�, we shall prove that a non-negative solution to (3.2)
cannot vanish at interior points, unless they are identically zero.

123
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Theorem 3.3 (Strong Maximum Principle) Let u be a non-negative weak solution to (3.2).
If there exists a point x0 ∈ � such that u(x0) = 0, then u ≡ 0 in �.

Proof The prove will follow by reductio ad absurdum. For this end, let x0 ∈ � such that
u(x0) > 0 and suppose without loss of generality that

d0 := dist(x0, ∂{u > 0}) <
1

5
dist(x0, ∂�).

We have that u is locally bounded due to Comparison Principle. Now, for fixed values of
A > 0 and s > 0 (large enough) we define the following barrier function:

�A,s(x) := Ae
−s

|x−x0 |2
d2
0 − e−s

e− s
4 − e−s

,

for which, a straightforward calculation shows that⎧⎪⎨
⎪⎩

Q�[�A,s](x) ≤ 0 in Bd0(x0) \ Bd0
2
(x0)

�A,s = A in ∂Bd0
2
(x0)

�A,s = 0 in ∂Bd0(x0).

Notice that

inf
Bd0(x0)\B d0

2
(x0)

|∇ �A,s(x)| ≥ Asd−1
0 e−s

e− s
4 − e−s

≥ 5Ase−s

dist(x0, ∂�)(e− s
4 − e−s)

:= κ > 0. (3.3)

On the other hand, for any constant ζ > 0, the barrier ζ�A,s still being a subsolution in
Bd0(x0) \ Bd0

2
(x0). In consequence,

Q�[ζ�A,s](x) ≤ 0 ≤ Q�[u](x) in Bd0(x0) \ Bd0
2
(x0).

Moreover, by taking ζ0 ∈ (0, 1) small enough such that

ζ0A ≤ I d0
2
[u](x0)

we obtain

ζ0�A,s ≤ u in ∂Bd0(x0) ∪ ∂Bd0
2
(x0).

Thus, by using Comparison Principle (Lemma 2.2) we obtain that

ζ0�A,s ≤ u in Bd0(x0) \ Bd0
2
(x0). (3.4)

Now, for any max{0, p − 2} < m < p − 1 (1.3) can be rewritten as

−div(�(x, u,∇u)) + g(x)um+ = 0 in �,

where g(x) := λ0(x)u
p−m−1
+ (x). Thus, for z ∈ ∂Bd0 ∩∂{u > 0}, we can invoke Theorem 1.2

to obtain
Sr [u](z) ≤ C(N , p,m, ‖g‖L∞(�))r

p
p−m−1 ≤ Cr p (3.5)

for r � 1 small enough, since g fulfils the assumptions of such a theorem.
Observe that from (3.3) one can see that

ζ0κ|x − z| ≤ ζ0|�A,s(x) − �A,s(z)| = ζ0�A,s(x).
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Moreover, from (3.4) we get

ζ0�A,s(x) ≤ u(x) ≤ S|x−z|[u](z).
Mixing up the last two equations together with (3.5) we obtain that

ζ0κ ≤ C|x − z|p−1 (3.6)

for all x ∈ (Bd0(x0) \ Bd0/2(x0)) ∩ Br (z) provided that r is small enough.
Since the constants ζ0, κ and C are fixed and independent on x , from (3.6) we arrive to a

contradiction since x ∈ (Bd0(x0) \ Bd0/2(x0)) ∩ Br (z) can be taken such that the difference
|x − z| is arbitrarily small. Such absurd proves the result. ��

Example 3.4 According to Theorem 3.3, when q = p − 1, non-trivial weak solutions to
(1.3) must be strictly positive. For example, if λ0 is a positive constant, fixed any direction
i = 1, . . . , N we have that

u(x) = u(x1, . . . , xi , . . . , xN ) = e
p
√

λ0
p−1 .xi

is a strictly positive solution to

−�pu(x) + λ0 · u p−1(x) = 0 in � ⊂ R
N ,

for any p > 1.

4 Non-degeneracy properties

This Section is devoted to prove some geometrical and measure properties that play an
essential role in the description of solutions to free boundary problems of dead core type.
For this purpose, we will assume (from now on) the following properties on �, which are,
in fact are stronger than (H1) and (H3), namely,

(A1) � ∈ C1(� × R × R
N \ {0};RN )

(A2) There exists a constant κ1 > 0 such that for p ≥ 2

N∑
i, j=1

∣∣∣∣∂�i

∂ξ j
(x, z, ξ)

∣∣∣∣ ≤ κ1|ξ |p−2, (4.1)

N∑
i, j=1

∣∣∣∣∂�i

∂x j
(x, z, ξ)

∣∣∣∣+
N∑

i, j=1

∣∣∣∣∂�i

∂z
(x, z, ξ)

∣∣∣∣ ≤ κ1|ξ |p−1 (4.2)

for a.e. x ∈ �, all z ∈ R and ξ ∈ R
N \ {0}.

The next result gives exactly the growth rate at which non-negative weak solutions leave

their dead core sets. More precisely, the theorem establishes a C
p

p−1−q growth estimate from
below, which together with Corollary 3.1 implies that u leaves the dead core set trapped by

the graph of two functions of the order dist(x, ∂{u > 0}) p
p−1−q . It is worth to mention that

we will not require the p-ellipticity hypothesis. However, we are assuming the monotonicity
hypothesis from Sect. 3 in order to use the comparison principle.

123



83 Page 12 of 24 J. V. da Silva, A. M. Salort

Theorem 4.1 (Non-degeneracy) Let u be a non-negative, bounded weak solution to (1.3)
in � and let �′ � �, x0 ∈ {u > 0} ∩ �′ be a generic point in the closure of the non-
coincidence set. Assume also that p > 2 + q and λ− = inf

�
λ0(x) > 0. Then for all

0 < r < min{1, dist(�′, ∂�)} there holds
sup

∂Br (x0)

u(x) ≥ c0(p, q, κ1, λ−)r
p

p−1−q . (4.3)

Proof Notice that, due to the continuity of solutions, it is sufficient to prove that such estimate
is satisfied just at points within {u > 0} ∩ �.

First of all, let us define the scaled function

ur (x) := u(x0 + r x)

r
p

p−1−q
.

Now, let us introduce the auxiliary barrier function

�(x) := C|x | p
p−1−q

for a positive constant C to determinate a posteriori and the re-scaled vector field

�r (x, z, ξ) := r− (1+q)(p−1)
p−1−q �

(
x0 + r x, r

p
p−1−q z, r

1+q
p−1−q ξ

)
.

Observe that the re-scaled function �r also satisfies hypothesis (A1) and (A2) (The
monotonicity hypothesis is satisfied trivially). Indeed, since 0 < r < 1 from (4.1)

N∑
i, j=1

∣∣∣∣∂(�i )r

∂ξ j
(x, z, ξ)

∣∣∣∣ = r− (1+q)(p−1)
p−1−q

N∑
i, j=1

∣∣∣∣∂�i

∂ξ j
(x0 + r x, r

p
p−1−q z, r

1+q
p−1−q ξ)

∣∣∣∣
≤ κ1r

− (1+q)(p−1)+1+q
p−1−q

∣∣∣∣r
1+q

p−1−q ξ

∣∣∣∣
p−2

= κ1.

Now, from (4.2) we obtain that

N∑
i, j=1

∣∣∣∣∂(�i )r

∂x j
(x, z, ξ)

∣∣∣∣+
N∑

i, j=1

∣∣∣∣∂(�i )r

∂z
(x, z, ξ)

∣∣∣∣

= r− (1+q)(p−1)
p−1−q

N∑
i, j=1

∣∣∣∣∂�i

∂x j

(
x0 + r x, r

p
p−1−q z, r

1+q
p−1−q ξ

)∣∣∣∣

+ r− (1+q)(p−1)
p−1−q

N∑
i, j=1

∣∣∣∣∂�i

∂z

(
x0 + r x, r

p
p−1−q z, r

1+q
p−1−q ξ

)∣∣∣∣

≤ r− (1+q)(p−1)
p−1−q +1

κ1

∣∣∣∣r
1+q

p−1−q ξ

∣∣∣∣
p−1

= rκ1|ξ |p−1

≤ κ1|ξ |p−1.
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A straightforward computation using (4.1) and (4.2) shows that

−div(�r (x, �,∇�)) + λ̂0 (x) · �q(x) ≥ 0 ≥ −div(�r (x, ur ,∇ur ))

+λ̂0 (x) · (ur )
q
+(x) in B1,

provided that C fulfils the condition

κ1C
p−1−q

[(
p

p − 1 − q

)p−1

+ C−1
(

p

p − 1 − q

)p−2

+ 1

]
≤ λ−, (4.4)

where above we have defined λ̂0(x) := λ0(x0 + r x). Observe that such a condition (4.4) is
naturally possible, because the continuous function

h(t) := atα+1 + btα + c,

where

α := p − 2 − q > 0, a := κ1

[(
p

p − 1 − q

)p−1

+ 1

]
,

b := κ1

(
p

p − 1 − q

)p−2

and c := −λ−

admits at least a real root according to the Intermediate value theorem.
Finally, if ur ≤ � on the whole boundary of B1, then, the Comparison Principle would

imply that

ur ≤ � in B1,

which clearly contradicts the assumption that ur (0) > 0. Therefore, there exists a point
Y ∈ ∂B1 such that

ur (Y ) > �(Y ) = C,

and scaling back we finish the proof of the theorem. ��
Remark 4.2 Let us stress that if we consider ξ �→ �(ξ), i.e., the vector field � does not
depend on lower order terms, then we can remove the assumption p > 2 + q just for p ≥ 2.
Moreover, in the case of p-Laplace operator we find explicitly that

C =
[

λ−
κ1

(p − 1 − q)p

pp−1(pq + N (p − 1 − q))

] 1
p−1−q

.

An interesting piece of information is that as consequence of Theorem 4.1 we obtain the
following finer growth for point near the free boundary: given x0 ∈ {u > 0} ∩�, there holds
that

u(x0) ≥ Cdist(x0, ∂{u > 0}) p
p−1−q .

Corollary 4.3 Let u be a non-negative, bounded weak solution to (1.2) in � and �′ � �.
Given x0 ∈ {u > 0} ∩ �′, there exists a universal constant C� > 0 such that

u(x0) ≥ C�dist(x0, ∂{u > 0}) p
p−1−q .
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Proof Suppose that C� does not exist. Then there exist a sequence xk ∈ {u > 0} ∩ �′ with

dk := dist(xk, ∂{u > 0} ∩ �′) → 0 as k → ∞ and u(xk) ≤ k−1d
p

p−1−q
k .

Now, let us define the auxiliary function vk : B1 → R by

vk(y) := u(xk + dk y)

d
p

p−1−q
k

and the vector field

�k(x, z, ξ) := d
− (1+q)(p−1)

p−1−q
k �

(
xk + dkx, d

p
p−1−q
k z, d

1+q
p−1−q
k ξ

)
.

It is easy to check that

(1) vk ≥ 0 in B1.
(2) −div(�(x, vk ,∇vk) + λ0(xk + dk y)v

q
k = 0 in B1 in the weak sense.

(3) vk(y) ≤ C(N , p) · dα
k + 1

k ∀ y ∈ B1 according to local Hölder regularity of weak
solutions.

From the Non-degeneracy Theorem 4.1 and the last sentence we obtain that

0 < C0·
(

1

2

) p
p−1−q ≤ sup

B 1
2

vk(y) ≤ max{1,C(N , p)}·
(
dα
k + 1

k

)
→ 0 as k → ∞, (4.5)

which clearly yields a contradiction. This concludes the proof. ��

5 Some consequences

In the following, we will present some consequences arising from the growth rates and the
non-degeneracy property for quasi-linear dead core problems.

As a first consequence of Theorem 1.2, we improve the local growth estimates for first
derivatives of dead core solutions. In fact, we obtain a finer gradient control near the free
boundary.

Corollary 5.1 Let u be a bounded weak solution to (1.3) in B1. Then, for any point z ∈ {u >

0} ∩ B 1
2
, there holds

|∇u(z)| ≤ Cdist(z, ∂{u > 0}) 1+q
p−1−q . (5.1)

Proof First of all, fix z ∈ {u > 0} ∩ B 1
2

and denote r := dist(z, ∂{u > 0}. Now, select
x0 ∈ ∂{u > 0} a free boundary point which achieves the distance, i.e.,

r = |z − x0|.
According to Theorem 1.2 we have that

sup
Br (z)

u(x) ≤ sup
B2r (x0)

u(x) ≤ Cr
p

p−1−q . (5.2)

Next, we define the scaled auxiliary function ω : B1 → R+ by

ω(x) := u(z + r x)

r
p

p−1−q
.

123



Sharp regularity estimates for quasi-linear elliptic dead… Page 15 of 24 83

As previously, ω fulfils the following equation

div(�r (x, ω,∇ω)) = λ̂0(x)ω
q(x) in B1 (5.3)

in the weak sense, where

�r (x, s, ξ) := r− (1+q)(p−1)
p−1−q �

(
z + r x, r

p
p−1−q s, r

1+q
p−1−q ξ

)
and λ̂0(x) := λ0(z + r x).

It is a straightforward to verify that �r also satisfies hypothesis (H1)–(H4). Moreover,
from (5.2) we get that

sup
B1

ω(x) ≤ C.

Finally, by invoking the uniform gradient estimates from [7,17], [23, Chapter 4] and [34,
Proposition 2] for bounded solutions we obtain that

1

r
1+q

p−1−q

|∇u(z)| = |∇ω(0)| ≤ C0.

This finishes the proof of the corollary. ��
The Non-degeneracy estimate from Corollary 4.3 implies particularly a non-degeneracy

property in measure. As it was commented in the introduction, this estimate is useful in
several qualitative contexts of the theory of free boundary problems.

Theorem 5.2 (Non-degeneracy in measure) Let u be a weak solution to (1.3). Given�′ ⊂ �

there exist ρ0 > 0 and κ > 0 depending only on �′ and universal parameters such that

LN
(
�′ ∩ {0 < u(x) < ρ

p
p−1−q }

)
≤ κρ

for any ρ ≤ ρ0.

Proof Fix r0 > 0 (to be chosen a posteriori) and let ρ0 given by

ρ0 = min{u(x)
∣∣ x ∈ �′ and dist(x, ∂{u > 0}) ≥ r0}.

Now, let x0 ∈ �′ such that dist(x0, ∂{u > 0}) < r0. According to Corollary 4.3

u(x0) ≥ Cdist(x0, ∂{u > 0}) p
p−1−q .

For this very reason, if r0 > dist(x0, ∂{u > 0}) ≥ ρ

C
p−1−q

p
, we obtain that u(x0) ≥ ρ

p
p−1−q .

Therefore,

LN
(
�′ ∩

{
0 < u(x) < ρ

p
p−1−q

})
≤ LN

({
�′ ∩ {u > 0} ∣∣ dist(x, ∂{u > 0})< ρ

C
p−1−q

p

})

≤ κρ

for some universal κ > 0. ��
As soon as we prove the sharp asymptotic behaviour for our free boundary problem, it

is a natural consequence to obtain some weak geometric properties of the phase zone. For
this reason, we finish up this part by establishing that the positiveness region has uniform
positive density along the free boundary. Particularly, the development of cusps along free
boundary is inhibited.
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Corollary 5.3 (Uniform positive density) Let u be a non-negative weak solution to (1.3) in
B1 and x0 ∈ ∂{u > 0} ∩ B 1

2
be a free boundary point. Then for any 0 < ρ < 1

2 ,

LN (Bρ(x0) ∩ {u > 0}) ≥ θρN ,

for a constant θ > 0 that depends only on p and q.

Proof Applying Theorem 4.1 there exists a point ŷ ∈ ∂Br (x0) ∩ {u > 0} such that,

u(ŷ) ≥ c0r
p

p−1−q . (5.4)

Moreover, from Theorem 1.2 there exists κ > 0 small enough with universal dependence
such that

Bκr (ŷ) ⊂ {u > 0}, (5.5)

where the constant κ is given by

κ :=
(

c0

7C0

) p−1−q
p

.

In effect, if this were not true, it would exist a free boundary point ẑ ∈ Bκr (ŷ). Consequently,
from (5.4) we obtain that

c0r
p

p−1−q ≤ u(ŷ) ≤ sup
Bκr (ẑ)

u(x) ≤ C0(κr)
p

p−1−q = 1

7
c0r

p
p−1−q ,

which yields a contradiction. Therefore,

Bκr (ŷ) ∩ Br (x0) ⊂ Br (x0) ∩ {u > 0}.
Hence,

LN (Bρ(x0) ∩ {u > 0}) ≥ LN (Bρ(x0) ∩ Bκr (ŷ)) ≥ θr N ,

which proves the result. ��
Definition 5.4 (ζ -Porous set) A set S ∈ R

N is said to be porous with porosity constant
0 < ζ ≤ 1 if there exists an R > 0 such that for each x ∈ S and 0 < r < R there exists a
point y such that Bζr (y) ⊂ Br (x) \ S.

Corollary 5.5 (Porosity of the free boundary) There exists a constant 0 < ξ =
ξ(N , λ, p, q) ≤ 1 such that

HN−ξ
(
∂{u > 0} ∩ B 1

2

)
< ∞. (5.6)

Proof Let R > 0 and x0 ∈ � be such that B4R(x0) ⊂ �. We will prove that ∂{u >

0} ∩ BR(x0) is a δ
2 -porous set for a universal constant 0 < δ ≤ 1. For this purpose, let

x ∈ ∂{u > 0} ∩ BR(x0). For each r ∈ (0, R) we have Br (x) ⊂ B2R(x0) ⊂ �. Now, let
y ∈ ∂Br (x) such that

u(y) = sup
∂Br (x)

u(t).

By Theorem 4.1

u(y) ≥ c0r
p

p−1−q . (5.7)
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On the other hand, near the free boundary, from Theorem 1.2

u(y) ≤ C0d(y)
p

p−1−q , (5.8)

where d(y) := dist(y, ∂{u > 0} ∩ B2R(x0)). From (5.7) and (5.8) we get

d(y) ≥ δr (5.9)

for a positive constant 0 < δ :=
(

c0
C0

) p−1−q
p ≤ 1.

Now, let ŷ be in the segment joining x and y be such that |y − ŷ| = δr
2 , then there holds

B δ
2 r

(ŷ) ⊂ Bδr (y) ∩ Br (x), (5.10)

indeed, for each z ∈ B δ
2 r

(ŷ)

|z − y| ≤ |z − ŷ| + |y − ŷ| <
δr

2
+ δr

2
= δr,

|z − x | ≤ |z − ŷ| + (|x − y| − |ŷ − y|) ≤ δr

2
+
(
r − δr

2

)
= r.

Finally, since by (5.9) Bδr (y) ⊂ Bd(y)(y) ⊂ {u > 0}, we get

Bδr (y) ∩ Br (x) ⊂ {u > 0},
which together with (5.10) implies

B δ
2 r

(ŷ) ⊂ Bδr (y) ∩ Br (x) ⊂ Br (x) \ ∂{u > 0} ⊂ Br (x) \ ∂{u > 0} ∩ BR(x0).

Therefore, ∂{u > 0} ∩ BR(x0) is a δ
2 -porous set. Finally, the (N − ξ)-Hausdorff measure

estimates in (5.6) follows from [22]. ��

Particularly, we conclude from Corollary 5.5 that ∂{u > 0} has Lebesgue measure zero.
In this last part we shall establish the stability of the dead core (or coincidence) set.

Precisely, we will prove that the L∞-norm of two dead core solutions controls the difference,
in the measure theoretic sense, of their dead core sets.

Let us introduce the following notation

K[u] := {u = 0} ∩ B 1
2

and K[u] � K[v] := (K[u] \ K[v]) ∪ (K[v] \ K[u]).

Theorem 5.6 Let v1, v2 be two bounded weak solutions to (1.3) under the hypothesis of
Theorems (1.3) and 4.1 and fulfilling, for 0 < σ ≤ 1

‖v1 − v2‖L∞(B1) ≤ σ
p

p−1−q . (5.11)

Then, for a constant c = c(N , p, q) > 0 large enough there holds that

LN (K[v1] � K[v2]) ≤ cσ and K−cσ [v2] ⊂ K[v1] ⊂
{
v2 < σ

γ+2
γ+1−μ

}
,

where

K−cσ [v2] := {x ∈ K[v2]: dist(x, {v2 > 0}) > σ }.
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Proof Note that for any solution u to (1.3) it holds from Theorem 1.2 and Corollary 5.1 that

{
x : 0 < u(x) < Ĉσ

p
p−1−q

}
∩ Br (x0) ⊂

{
x : |Du(x)| < σ

1+q
p−1−q

}
∩ Br (x0) (5.12)

for an appropriate constant Ĉ > 0. Moreover, from (5.11) and (5.12) we obtain that

max
{
LN (K[v1] \ K[v2]),LN (K[v2] \ K[v1])

}
≤ c1σ and K[v1] ⊂

{
v2(x) < σ

p
p−1−q

}
.

In order to finish, consider z ∈ {v1 > 0}. Thus, by using the Non-degeneracy, Theorem 4.1
we obtain that

sup
Bcσ (z)

u(x) ≥ c0(cσ)
p

p−1−q > σ
p

p−1−q ,

for a large constant c. Therefore, we conclude that z /∈ K−cσ [v2]. ��

6 A Liouville type theorem

Liouville type theorems are well-known in the context of elliptic PDEs and have played an
important role in the modern theory of mathematical analysis due to their applications in
Nonlinear equations, Free boundary problems and Differential Geometry, just to mention a
few topics.

The main purpose of this subsection is to prove that a global solution to

− div(�(x, u,∇u)) + λ0(x)u
q
+(x) = 0 in R

N (6.1)

must grow faster than C|x | p
p−1−q as |x | → ∞ for a suitable constant C > 0, unless it is

identically zero.
For this end, fix x0 ∈ R

N , ς > 0 and 0 < r0 < r , we consider for ρ < r (to be considered)
the quantity r0 = r −ρ. Then, as in the proof of Theorem 4.1, it can be seen that the radially
symmetric function v : Br (x0) → R+ given by

v(x) = �(N , λ0, κ1, p, q)(|x − x0| − r0)

p
p−1−q

+ (6.2)

is a weak super-solution to⎧⎨
⎩

−div(�(x, u,∇u)) + λ0(x)u
q
+(x) = 0 in Br (x0)

u(x) = ς on ∂Br (x0)

u(x) = 0 in Br0(x0),

(6.3)

where �(N , λ0, κ1, p, q) is the biggest constant satisfying (4.4) and ρ =(
ς

�(N ,λ0,κ1,p,q)

) p−1−q
p

.

The explicit expression of v allow us to prove the following sharp (quantitative) Liouville
type result for dead core problems.

Theorem 6.1 Let u be a weak solution to (6.1) with � as in Sect. 4. Then, u ≡ 0 provided
that

lim sup
|x |→∞

u(x)

|x | p
p−1−q

< �(N , λ0, κ1, p, q). (6.4)
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Proof Fixed s0 > 0 (large enough) let us consider w : Bs0 → R the unique (see Theorem 2.3)
weak solution to

{−div(�(x, w,∇w)) + λ0(x)w
q
+(x) = 0 in Bs0

w(x) = sup∂Bs0
u(x) on ∂Bs0 .

(6.5)

According to the comparison principle

u ≤ w in Bs0 .

Moreover, due to hypothesis (6.4)

sup
∂Bs0

u(x)

s
p

p−1−q
0

≤ sup
Bs0

u(x)

s
p

p−1−q
0

≤ c�(N , λ0, κ1, p, q) (6.6)

for some c � 1 small enough and s0 � 1 large enough. As above, the function

v(x) = �(N , λ0, κ1, p, q)

⎛
⎜⎜⎝|x | − s0 +

⎛
⎜⎝

sup
∂Bs0

u(x)

�(N , λ0, κ1, p, q)

⎞
⎟⎠

p−1−q
p
⎞
⎟⎟⎠

p
p−1−q

+

(6.7)

is a weak super-solution to (6.5). Thus, w ≤ v in Bs0 .
Therefore, by (6.6) and (6.7) we conclude that

u(x) ≤ �(N , λ0, κ1, p, q)

(
|x | − (1 − c

p−1−q
p )s0

) p
p−1−q

+
→ 0 as s0 → ∞.

��

Remark 6.2 The following consequences follow from Theorem 6.1.

(1) Note that the constant in Theorem 6.1 is optimal (for some classes of �) in the sense that
we can not remove the strict inequality in (6.4). In fact, the function given by

u(x) = �(N , λ0, p, q)(|x | − r0)

p
p−1−q
+

solves (6.1) (for �(x, u,∇u) = |∇u|p−2∇u and λ0(x) = λ) and it clearly attains the
equality in (6.4) for the explicit value

�(N , λ0, p, q) =
[
λ

(p − 1 − q)p

pp−1(pq + N )(p − 1 − q)

] 1
p−1−q

.

(2) If u is not a constant function, then there exist c = c(N , p, q) > 0 and α = α(N , p, q) ≥
p

p−q−1 such that

Sr [u] ≥ c · rα, ∀ R � 1.

Particularly, a non-constant solution to (6.1) must grow at infinity at least as fast as the
power |x |α as |x | → ∞.
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7 (N − 1)-Hausdorff measure estimates for the free boundary

In this section we focus our attention to a fine measure theoretic property of the free boundary
∂{u > 0} ∩ �, namely, the finiteness of the corresponding Hausdorff measure (cf. Lee
and Shahgholian [24]). For this purpose, we restrict our analysis to solutions related to the
minimization problem

min
v∈Kg(�)

∫
�

F(x, u,∇u)dx, (Min)

where Kg(�) = {v ∈ W 1,p(�)
∣∣ v = g on ∂�} and

F(x, u,∇u) = G(x,∇u) + h(x, u).

Moreover, the following assumptions must be required:

• The mapping x �→ G(x, ξ) is continuous for all ξ ∈ R
N .

• There exists a constant ζ > 0 such that

ζ |ξ |p ≤ G(x, ξ) ≤ ζ−1|ξ |p.
• The mapping ξ �→ G(x, ξ) is differentiable with

�(x, ξ) = ∇ξG(x, ξ) and
d

du
h(x, u) = (q + 1)λ(x)uq+.

• The mapping ξ �→ G(x, ξ) is strictly convex.

Under the previous structural conditions we have the existence of minimizers to Min. More-
over, such minimizers are non-negative solutions for the following Euler–Lagrange equation:

div(�(x,∇u)) = (q + 1)λ(x)uq(x) in {u > 0} ∩ �.

In other words, minimizers are weak solutions to (1.3) with λ0(x) = (q + 1)λ(x).
From now on, we will assume the hypothesis (H1)–(H4) (respectively (A1)–(A2)) on �.
Before starting our analysis, we will show that Min (resp. the dead core problem (1.3))

defines a measure supported on its free boundary.

Lemma 7.1 Let μ� be given by

μ� = div(�(x,∇u)) − λ0(x)u
q(x)χ{u>0}.

Then, it defines a non-negative Radonmeasure supported on ∂{u > 0}∩�where u minimizes
(Min).

Proof Since u is a non-negative minimizer to (Min), and G is strictly convex, we have that
for all 0 ≤ v ∈ C∞

0 (�) and ε > 0, the following relation is true

0 ≤ 1

ε

∫
�

(G(x,∇(u − εv)) − G(x,∇u)) dx + 1

ε

∫
�

λ(x)[(u − εv)
q+1
+ − uq+1] dx

≤ −
∫
�

�(x,∇(u − εv)) · ∇v dx + 1

ε

∫
�

λ(x)[(u − εv)
q+1
+ − uq+1] dx

= −
∫
�

�(x,∇(u − εv)) · ∇v dx +
∫

{u>0}

λ(x)[(u − εv)
q+1
+ − uq+1]

ε
dx
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+
∫

{u=0}

λ(x)(−εv)
q+1
+

ε
dx

= −
∫
�

�(x,∇(u − εv)) · ∇v dx +
∫

{u>0}

λ(x)[(u − εv)
q+1
+ − uq+1]

ε
dx.

Finally, by taking ε → 0 we obtain

−
∫

�

(
�(x,∇u) · ∇v − λ0(x)u

q(x)χ{u>0}v
)
dx ≥ 0.

For this very reason, the measure given by∫
�

v dμ� = −
∫

�

(�(x,∇u) · ∇v − λ0(x)u
q(x)χ{u>0}v) dx

is a non-negative Radon measure supported on ∂{u > 0} ∩ � according to Riesz’s represen-
tation Theorem. ��

In the next, we will establish upper and lower control on the (N − 1)-Hausdorff measure
of the set ∂{u > 0} for bounded minimizers to Min (resp. weak solutions to (1.2)). Such
bounds imply some specific measure theoretical information about the free boundary.

Theorem 7.2 Let u be a minimizer to Min. Fixed �′ � � and any x0 ∈ ∂{u > 0}∩�′ there
exist universal constants 0 < c ≤ C < ∞ such that

cr N−1 ≤ HN−1(Br (x0) ∩ ∂{u > 0}) ≤ Cr N−1. (7.1)

Particularly,

HN−1(∂{u > 0} \ ∂red{u > 0}) = 0

and ∂{u > 0} is locally a finite perimeter set.

Remark 7.3 Above, the reduced free boundary ∂red{u > 0} is a subset of ∂{u > 0} where
there exists the normal vector in the measure theoretic sense, see [18] for a nice survey about
geometric measure theory.

Proof By using appropriated test functions 0 ≤ vk ≤ 1 such that vk → χBr (x0), we can
proceed with a standard approximation scheme (for almost r > 0). Thus, from (H3) and
gradient bounds (cf. [7,17,34]) we get using the Divergence Theorem that∫

Br (x0)

dμ� =
∫

∂Br (x0)

�(x,∇u) · η dHN−1 −
∫

Br (x0)

λ0(x)u
q(x)χ{u>0}dx

≤ C‖∇u‖p−1
L∞(�′)r

N−1

≤ Cr N−1.

This proves the upper bound in (7.1) for a constant C > 0 depending only on �′, ‖u‖ and
universal parameters.

In the another hand, we may assume, without loss of generality that x0 = 0. Moreover, in
order to verify the lower bound, for the sack of contradiction, let us assume that there exists
a sequence of positive numbers such that rk → 0 as k → ∞ and

HN−1(Brk (x0) ∩ ∂{u > 0}) = o
(
r N−1
k

)
. (7.2)
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Now, by defining

vk(x) := u(rk x)

r
p

p−1−q
k

we obtain the sequence of non-negative measures μ�k defined in B 3
4
, given by

μ�k := div(�k(x,∇vk)) − λk0(x)v
q
k χ{vk>0},

where

�k(x, ξ) := r
− (1+q)(p−1)

p−1−q
k �

(
x0 + rk x, r

1+q
p−1−q
k ξ

)
and λk0(x) := r

pq
p−1−q
k λ0(x0 + rk x).

As before, it is easy to check that �k(x, ξ) satisfies (H1)–(H4) (resp. (A1)–(A2)). Now, we
may assume, via compactness, that μ�k ⇀ μ0 in the sense of measures. Furthermore, (7.2)
implies that

μ�k ⇀ 0. (7.3)

Next, we will show that
μ0 = div(�0(x0,∇u0)), (7.4)

where, up to a subsequence �0 = lim
k→∞ �k and u0(x) = lim

k→∞ uk(x). Recall that from

Corollary 5.5, it holds that LN (∂{u0 > 0}) = 0. For this reason, we will only check (7.4)
for balls contained in {u0 > 0} and in {u0 = 0}. First, let us consider a ball B ⊂ {u0 > 0}.
Notice that from the growth estimates near free boundary points, Corollary 5.1 and property
(H3), we have

|�k(x,∇vk)| ≤ C(N , p)‖∇vk‖p−1
L∞(B3/4)

≤ C(N , p, q, λ+). (7.5)

Hence, up to a subsequence, we have

�k → �0

in the weak* topology in L∞
(
B 3

4

)
. Moreover,u j → u0 locally uniformly in theC1-topology

in B. Consequently,

�k → �0(x0,∇u0)

in the weak* topology in L∞(B), where we have used (7.5). On the other hand,∫
B

λk0(x)v
q
k χ{vk>0}dx ≤ C(N , p, q, λ+)LN (B)r

pq
p−1−q
k → 0 as k → ∞,

where we have used Theorem 1.2. Therefore, we have proved (7.4) for this first case.
Now, consider B ⊂ {u0 = 0}. It is immediate that

div(�0(x0,∇u0))(B) = 0.

Moreover, if Bj is a sequence of balls such that Bj ↗ B, then for some k j ∈ N we get

uk ≡ 0 in Bj ∀ k > k j . (7.6)

In fact, let B̂ ⊂ B and suppose that there were a subsequence uk j fulfilling uk j �= 0 in B̂.
Then, according to the strong non-degeneracy given in Theorem 4.3, there must exist points
Yk j ∈ B̂ such that

uk j (Yk j ) ≥ c > 0.
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Thus, we may assume, passing a subsequence if necessary, Yk j → Y0 ∈ B̂. Moreover, as
uk j → u0 we obtain, after passing to the limit that u0(Y0) > 0, which is a contradiction to
our assumption. Therefore, from (7.6) we obtain that

μ�k → 0.

Thus (7.4) is checked for the second case.
Finally, by combining (7.3) and (7.4) we obtain{

div(�0(x0,∇u0)) = 0 in �

u0(x0) = 0,

and the Strong Maximum Principle from [35] implies that u0 ≡ 0. Nevertheless, as before,
we obtain a contradiction with the non-degeneracy of u0 ≥ c > 0 given in Theorem 4.3.
Such a contradiction proves the result. ��
Remark 7.4 As an immediate consequence of previous estimates we conclude that F(u) has
locally finite perimeter. Moreover, the reduced free boundary Fred(u) := ∂red{u0 > 0} has
a total HN−1 measure in the sense that HN−1(F(u) \ Fred(u)) = 0. Particularly, the free
boundary has an outward vector for HN−1 almost everywhere in Fred(u) (cf. [18] for more
details).
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